A script for converting basic timelogs to the formats for timetracking import. Initially for [Pomodoro Prompt](https://gitlab.com/agaric/python/pomodoroprompt) to Harvest and [Business Tracker](https://gitlab.com/novawebdevelopment/business-tracker)
Find a file
2021-04-28 11:42:00 -04:00
pomodoro_to_harvest.py Regularize Drutopia references 2021-04-28 11:42:00 -04:00
README.md Add note on another way data can be manipulated after running the whole script 2021-04-28 11:41:46 -04:00

Parse timelogs for upload

A script for converting basic timelogs to the formats for timetracking import.

Initially for Pomodoro Prompt to Harvest and Business Tracker

Pmodoro Prompt is extremely simplistic, and only has a description field and automatically saves the date. The time unit for each entry is half an hour.

To import into a timetracking system of any sophistication, we need to parse our description and

Harvest allows CSV import, with the fields:

date,project,description

If project doesn't exist it will create a new project.

Learning from this script and continuing development

Rather than having to type out all 40 plus lines of data processing, you can also run the whole script in the interactive shell and play with it:

After typing python3 to get the interactive Python shell in this directory, you can do this line:

exec(open('pomodoro_to_harvest.py').read())

And now you can interact with the resulting timelog DataFrame:

timelog.query("time>30").loc[:100,["description","time","orig_desc"]].tail(50)

Or the slightly more processed tl DataFrame, for example to get the hours worked per project:

tl.groupby("project").agg({"time": "sum"})["time"]/60

And yeah you can just sort of tack on the column you want to mess with and do an operation like that!